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A computational approach to the prediction of jet mixing noise is described. It is based
on Lighthill’s analogy, used together with a semi-deterministic modelling of turbulence
(SDM), where only the large-scale coherent motion is evaluated. The features of SDM
are briefly illustrated in the case of shear layers, showing that suitable descriptions
of the mean flow and of the large-scale fluctuations are obtained. Aerodynamic
calculations of two cold fully expanded plane jets at Mach numbers 0.50 and 1.33 are
then carried out. The numerical implementation of Lighthill’s analogy is described and
different integral formulations are compared for the two jets. It is shown that the one
expressed in a space–time conjugate (κ, ω)-plane is particularly convenient and allows
a simple geometrical interpretation of the computations. Acoustic results obtained
with this formulation are compared to relevant experimental data. It is concluded
that the radiation of subsonic jets cannot be explained only by the contribution of the
turbulent coherent motion. In this case, directivity effects are well recovered but the
acoustic spectra are too narrow and limited to the low-frequency range. In contrast
at Mach number 1.33, especially in the forward quadrant, results are satisfactory,
showing that coherent structures indeed provide the main source of supersonic jet
mixing noise.

1. Introduction
Sound generated by turbulence raises many questions of fundamental and technical

interest, which have been extensively investigated in the past forty years. While the
initial effort was essentially analytical and experimental, recent work has relied more
heavily on computational techniques. The problem is indeed difficult since the noise
originates in turbulent fluctuations which show a very wide range of spatial and
temporal frequencies, and complete knowledge of the flow field is still out of reach
for configurations of practical interest. Thus a steady statistical description of the
turbulent flow has long been used as in the work of Ribner (1969) or Goldstein &
Rosenbaum (1973). These authors employed analytical turbulence models and more
recently Béchara et al. (1995) combined a similar formulation with results obtained
from numerical simulations. Interesting features of the noise production mechanism
have been obtained but this approach, which does not distinguish different turbulent
scales, suffers a few limitations regarding its generality. This is why we are interested
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Figure 1. From turbulent fluctuations to the radiated noise. The path chosen here is indicated
with bold rules.

here in techniques involving the use of a time-dependent representation of the flow
field.

To provide the proper background to the present investigation, we show in figure 1
the main routes which may be taken to evaluate the sound field generated by
turbulent fluctuations. For the computation of the aerodynamic field a choice has to
be made between direct numerical simulation (DNS), large-eddy simulation (LES) or
semi-deterministic modelling (SDM), the latter pertaining, as detailed below, to the
family of unsteady Reynolds averaged Navier–Stokes simulations (RANS). One then
has to introduce an acoustic field representation which may be based on Lighthill’s
analogy, higher-order wave equations or the linearized Euler set of equations. Each
of these descriptions includes an identification of the acoustic source term. The
sound field may then be evaluated in various ways. Among the many possible paths,
we investigate in this article one combination. However the methodology which is
developed here can be used equally to investigate other possible choices. As shown in
figure 1 the classical theory devised by Lighthill in 1952 constitutes a key approach,
where the problem of sound emission by turbulent flow is shown to be equivalent to
the radiation in free space of a source term representing the turbulent aerodynamic
fluctuations. The theory has the only fundamental limitation of implying a separation
between the source volume of the aerodynamic field and the far region where the
acoustic field propagates. In particular the interaction between acoustic propagation
and the mean flow, that is refraction, cannot be taken directly into account. Yet
Lighthill’s aeroacoustic analogy is a powerful and general approach based on a
limited set of assumptions. One purpose of this paper is to investigate the use of this
classical theory in computational aeroacoustics (CAA), with the objective of obtaining
a numerical prediction of jet mixing noise.

For the computation of the turbulent flow, direct numerical simulation may be
applied to simple configurations of fundamental interest (see e.g. Mitchell, Lele &
Moin 1995) but is still far from addressing the range of Reynolds numbers that
have to be dealt with in practice. An intermediate approach may be devised by
considering the large-scale motion in the turbulent flow and calculating the acoustic
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field resulting from these fluctuations only. It is known from the work of Brown &
Roshko (1974) that large-scale coherent structures exist in shear layers and it has
since been recognized that these structures are an essential feature of free shear flows
even at high Reynolds number. In the field of aeroacoustics, the question immediately
arose of the relation between these coherent structures and the radiated noise field,
or more precisely of the contribution of the coherent part of the turbulence to the
acoustic field (Laufer 1974). In 1971, Crow & Champagne had had the idea that
jet noise could be modified by acting on the orderly part of the flow. At the same
time, Bishop, Ffowcs Williams & Smith (1971) postulated that for supersonic jets the
principal noise sources were very large-scale wave-like undulations of the jet flow.
Three years later, Liu (1974), in a study that contains several basic ideas of the present
paper, considered a triple decomposition of turbulence, one of its components being
an instability wave field representing the organized part of turbulence, the amplitude
of which was determined by a kinetic energy equation. The near-jet noise field was
eventually calculated from the ‘large-scale wave-like eddies’ while the fine-grained
turbulent fluctuations were modelled.

In fact, Liu’s theory was tested for jet exit Mach numbers between 1.27 and
1.67 and it is now agreed that supersonic jet mixing noise is controlled by large-
scale organized turbulence. The physical mechanism underlying this statement is
the ‘Mach wave’ phenomenon: a turbulent eddy convected at supersonic speed
produces a strong and directive acoustic radiation at the Mach wave angle (see
e.g. Ffowcs Williams & Maidanik 1965; Phillips 1960). With a wave-like point of
view, only an instability wave – which may be the basis of the representation of
organized turbulence – with supersonic convection velocity radiates noise, a fact
emphasized by Tam & Morris (1980). The spatial growth and decay of instability
waves being taken into account, supersonic convection velocities may be expected
in axisymmetric jets for supersonic or high subsonic exit Mach numbers. Thus,
many experiments, for example by McLaughlin, Morrison & Troutt (1975, 1977)
or Seiner, McLaughlin & Liu (1982) show that the acoustic spectra measured for
fully expanded supersonic jets are not deeply modified when the Reynolds num-
ber is varied, which substantiates the theory that fine-scale turbulence does not
contribute significantly to the noise radiated, essentially by a low-level broadband
signal. On the theoretical side various jet noise models based on the same hypothesis
were proposed by Morris (1977), Ffowcs Williams & Kempton (1978) and Tam &
Morris (1980), and applied to supersonic jets. Further studies like Tam & Burton
(1984) have left little doubt that experimental supersonic jet mixing noise data can
be explained well in terms of the contribution of large-scale coherent structures
only.

In contrast the question remains to be settled in the subsonic range, where theo-
retical analyses are ambiguous and experimental results inconclusive. For example
Moore (1977) obtains a broadband amplification of the turbulence and radiated
noise proportional to the excitation of a subsonic jet, but observes no enhancement
of the large-scale motion, which leads him to conclude that the direct radiation of
the large-scale instabilities is negligible. On the other hand, Laufer & Yen (1983)
excite the initial laminar shear layer of a subsonic jet and report a reduction of the
broadband acoustic radiation. On the basis of high correlation levels of the radiated
noise with shear layer instabilities, they state that the growth and saturation of these
instabilities is a major noise contributor. In this context it is admitted (Tam 1991)
that analytical or numerical results are not yet available to provide a definitive answer
to the question.
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In this article, we would like to address these issues from a numerical standpoint
through the study of two plane jet flows at Mach number 0.50 and 1.33. Present
jet noise calculations rely on the computation of coherent structures only. For that,
following Ha Minh’s suggestion (Ha Minh 1994), a semi-deterministic turbulence
modelling is used, where coherent turbulence fluctuations are computed while the
stochastic fluctuations are modelled. The radiated noise is then computed from
Lighthill’s analogy. It must be noted here that this approach is computational
at two different levels: the evaluation of Lighthill’s source term which appears as a
computational fluid dynamics (CFD) problem and the treatment of Lighthill’s integral
which is rather a specific computational aeroacoustics (CAA) matter. The ambition
of this paper is to bring to light and as far as possible to treat the specific problems
connected with this choice. Moreover, we here consider classical ideas concerning jet
mixing noise processes to build a numerical prediction tool. Thus we try to refer as
often as possible to relevant theoretical work available and ultimately to experimental
data.

In principle the calculations of the turbulent flow field and the radiated sound
should be carried out in three dimensions. In what follows, the large-scale motion is
computed in two dimensions while the fine-grained turbulence is treated with a three-
dimensional model and the acoustic field is also evaluated in three dimensions. It is
well known that the large-scale motion may feature three-dimensional characteristics
but at this point in time the computational resources required for a fully three-
dimensional computation are not available. This is certainly a limitation of the
present analysis but it has been shown in the past that much could be learnt from
two-dimensional models. Moreover the dominant organized motion in free shear
flows is often structured around two-dimensional spanwise vortices, especially here
in plane jets with the shear layer convective Mach number well below 1. Finally it
seems to us unlikely that the main conclusions presented herein would be affected by
the three-dimensionality of the flow large scales.

In §2, the semi-deterministic modelling (SDM in the following) is presented. This
model is a modified k−ε turbulence closure. SDM is tested in the two-dimensional
shear layer configuration with special attention given to the energy balance between
the deterministic and random turbulence components. The plane jet flow com-
putations using SDM are described in §3. Section 4 is devoted to the numerical
implementation of Lighthill’s analogy. It is shown that, in agreement with existing
theoretical studies, the choice of a formulation of the theory adapted to numerical
evaluation is crucial, especially for subsonic jets. The appropriate formulation is the
one expressed in the conjugate (κ, ω) space, which yields an interesting geometrical
interpretation of the calculations, where the jet convection Mach number appears as
an essential parameter. The analysis of the acoustic results with respect to known
experimental data is the subject of §5, paying particular attention to their ability to
give reliable subsonic jet mixing noise predictions considering only the contribution
of large-scale coherent structures. This article concludes briefly with a few prospective
remarks (§6).

2. The semi-deterministic modelling (SDM)
2.1. The turbulence triple decomposition

While the existence of ‘coherent structures’ in shear flows is substantiated by many
observations, extraction of the coherent component poses problems. Experimentally
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the most common approach is to extract the coherent fluctuations by taking phase or
conditional averages using a phase reference either given by an external excitation or
by the detection of a specific event in the flow (Crow & Champagne 1971; Lepicovsky
et al. 1985). The theoretical version consists of using conditional ensemble averaging,
as opposed to time averaging which is obviously not relevant in the extraction of the
coherent motion. For simplicity consider a flow submitted to periodic forcing. The
phase average of a fluctuating quantity may be defined as

Φ(y, t) = lim
N→∞

1

N

N∑
i=1

Φi(y, t),

where Φi(y, t) stands for Φ(y, t+ iτ) and τ is the period of the forcing. In the absence
of such a simple forcing, which easily provides a phase-locking of the flow, the
conditional ensemble average Φ(y, t) must be seen as a generalization of the phase
average and is denoted likewise. Φi(y, t) may then be interpreted as a realization i of
the flow. It is now possible to define the incoherent fluctuations of Φ as

Φ′(y, t) = Φ(y, t)− Φ(y, t)

and if 〈Φ〉 denotes the classical time average of Φ, the coherent fluctuations are
determined by

Φc(y, t) = Φ(y, t)− 〈Φ〉(y).

These considerations lead to the triple decomposition of the turbulent field made
explicit by Hussain & Reynolds (1970):

Φ(y, t) = 〈Φ〉(y) + Φc(y, t)︸ ︷︷ ︸
Φ(y, t)

+Φ′(y, t).

The turbulent flow field is formally split into three parts: the mean flow or time-
averaged flow, the coherent fluctuating flow and the incoherent or stochastic fluc-
tuating flow. The use of such a decomposition in studies of turbulent shear flows
is not new. It had been suggested in early articles by Liepmann (1952). This kind
of splitting in terms of organized large-scale structures and fined-grained turbulence
was explored further by Hussain & Reynolds (1970), Liu (1974), and by many other
authors interested in the analysis of turbulent shear flows (see Liu 1988 for an ex-
tensive discussion). The objective is in any event to stress the distinction between
deterministic large-scale coherent motion and stochastic turbulence.

The basic idea of SDM is to recognize this distinction between aerodynamic
fluctuations that are strongly determined by the features of the mean flow and
smaller eddies, coming from the Kolmogorov cascade of these coherent structures.
The nature of the small-scale stochastic fluctuations is believed to be universal and
similar to the traditional turbulence concept. It is then legitimate to suppose that
coherent structures (represented by Φc) are predictable and may be computed, while
incoherent fluctuations (Φ′) may be represented by their statistical properties with the
help of a turbulence model. This technique, which has been investigated by different
authors (Ha Minh et al. 1989; McInnes, Claus & Huang 1989; Johansson, Davidson
& Olsson 1993), is the basis of the present flow computations.

It must not be forgotten that the triple decomposition originates from experimental
observations and that the coherent aerodynamic field is supposed to represent the
large-scale turbulent structures. Consequently it must be possible to compute Φ on a
grid much coarser than that necessitated by direct numerical simulations (DNS). In
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this respect, SDM is similar to large-eddy simulation (LES), a technique which could
have been used as well in this study. Yet, these two approaches are fundamentally
different. In LES, a spatial averaging is performed by convoluting the flow variables
with a low-pass filter. The width of this filter sets the position of the limit between
the low-frequency components of the spatial spectrum which are calculated and
the remaining high-frequency components which are modelled. With SDM there is
no such clear and adjustable cut-off, which makes it in principle less flexible and
predictable. On the other hand SDM has some important advantages that must
be stressed. The statistical average (or ensemble average) used to define the triple
decomposition forms the basis of traditional turbulence modelling, despite the fact
that in this case statistical and time averages are generally mixed up. This means
that classical and well-known turbulence models may be used for SDM. Yet, these
classical models were usually adjusted for configurations, such as grid turbulence,
where coherent structures are insignificant. Thus SDM requires a recalibration of the
turbulence model.

Ha Minh (1994) suggests that the k−ε turbulence model, initially derived by Jones
& Launder (1972), can be used to describe the fine-grained turbulence. For more
clarity, let us briefly recall the essential features of this model, presented here in its
compressible version.

Mass averaging, denoted Φ̃, must be introduced:

Φ̃ = ρΦ/ρ,

where ρ is the density. The associated decomposition is

Φ = Φ̃+ Φ′′.

With this definition, the compressible Navier–Stokes equations may be cast into a
form very similar to the incompressible version.

The fine-grained turbulence model is based on the eddy viscosity concept, where
the Reynolds stress is approximated by

− ρu′′i u′′j = µt

(
∂ũi

∂yj
+
∂ũj

∂yi
− 2

3
δij
∂ũl

∂yl

)
− 2

3
δijρk. (2.1)

Here k is the turbulent kinetic energy ρu′′i u
′′
i /2ρ and µt is the turbulent viscosity.

Note that k represents the turbulence associated with modelled stochastic small scales
only. For comparisons with experimental measurements of the turbulence level, it is
necessary to also include the contribution of the resolved coherent fluctuations. This
point is illustrated below.

In the k−ε model, the turbulent viscosity is determined by

µt = Cµρ
k2

ε
,

where Cµ is an empirical constant, traditionally equal to 0.09, and ε is the turbulent
kinetic energy dissipation rate. The balance equations of the compressible k− ε
model are well-known and will not be reproduced here. It is sufficient to mention
that this two-equation model together with the Navier–Stokes system (including
continuity, momentum and energy conservation) forms a closed system. Observing
that the standard model tends to overestimate the turbulence production in high-shear
regions, where coherent structures are likely to emerge, Ha Minh (1994) proposes
reducing the value of Cµ, thus decreasing the turbulent viscosity, to build the SDM.
For example for the backward facing step case he obtains the optimal value Cµ = 0.02.
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It is also indicated that Cµ is not universal and should be adjusted for each flow
configuration, whereas it was set to a unique value in the original model. This
is why in the following sections we test SDM on the well-documented shear layer
configuration with Cµ at its standard 0.09 value (§2.2) before observing the effect of a
modification of this constant. It is shown in §2.3 that decreasing Cµ essentially results
in shifting the energy balance between coherent and incoherent motion (§2.3) in the
sense of increasing the coherent structures level. Jet computations presented later (§3)
are performed with Cµ = 0.05.

At this point one may wonder if SDM may properly describe the interaction
between the coherent and fine-scale parts of the unsteady flow. This interaction is
accounted for by the eddy viscosity concept of the turbulence model, which like
any model is a simplified representation of the incoherent turbulent stresses, but has
been shown to be a suitable compromise between complexity and accuracy. The
eddy viscosity concept is also widely used for LES subgrid-scale models, which also
aim at representing the interaction between large-scale and fine-grained turbulent
fluctuations.

One may also doubt that coherent and incoherent motions may be treated as
uncorrelated. This point, while certainly questionable in principle, is quite reasonable.
We discuss here time correlation and the characteristic time scales of both types
of fluctuations are of a different order of magnitude. As underlined by Hussain
(1983), the coupling of coherent and incoherent motions by energy transfer does
not imply that they are correlated. Besides, the experimental characterization of
coherent structures consisting as mentioned above in exciting the flow and extracting
the fluctuations correlated with this excitation relies on this assumption.

Finally we would like to defend the approach followed in the paper. It is not
assumed that SDM provides a definitive solution to the problem at hand. This is
why we feel it necessary to include calculations performed on the shear layer test
case (§2.2). The validations of the next subsection will establish with confidence that
the model allows a realistic computation of the deterministic part of the turbulent
fluctuations.

2.2. Test on the shear layer

The plane mixing layer (see figure 2) is a basic shear flow, for which many theoretical
and experimental results exist. Thus, it constitutes a relevant test case before dealing
with jet flows. One of its essential properties is the absence of a characteristic
length scale. Only a velocity scale, for example the half-sum UM of the free-stream
speeds Ua and Ub, is readily available. Thus, after the distance required to ‘forget’
initial conditions specified at the confluence, the statistical properties of the flow are
self-similar in the variables y2/y1, y1 and y2 being respectively the streamwise and
transverse coordinates.

This leads to different verifications of SDM calculations. The similarity of time-
averaged profiles implies that the shear layer thickness δ must grow linearly with y1.
The shear layer growth inferred from the slope of the curve δ(y1) is a characteristic
parameter of the flow and may be compared to experimental data. The similarity
of various statistical moments of the flow may be checked. The mean streamwise
velocity and turbulence intensity profiles are examined in this test. Finally the peak
frequency of the velocity fluctuations scales with 1/y1, and may be estimated with a
linear stability approach.

Results are presented for three mixing layers with various combinations of super-
sonic and subsonic flow. The three cases are defined in table 1. The subscript a
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Figure 2. The plane mixing layer.

Case Ma Mb Ta (K) Tb (K) P (Pa) r = Ub/Ua s = ρb/ρa Mc

Shear layer 1 0.7 0.3 273 295 1.08× 105 0.45 0.93 0.19
Shear layer 2 3.1 1.7 137 253 2.35× 103 0.75 0.54 0.33
Shear layer 3 1.8 0.5 177 277 5.46× 104 0.35 0.64 0.52

Table 1. Main characteristics of the three shear layers

(respectively b) refers to the free stream in the region y2 > 0 (respectively y2 < 0), M
is the Mach number, U the velocity, T the temperature and P the pressure, identical
in the two streams. The parameters r = Ub/Ua and s = ρb/ρa are indicated together
with the convective Mach number

Mc =
∆U

ca + cb
,

where ∆U = |Ua −Ub| and c is the speed of sound. The mixing layers 2 and 3 were
investigated respectively by Papamoschou & Roshko (1988) and Samimy & Elliott
(1990).

2.2.1. Numerical method

The SDM equations with Cµ = 0.09 are advanced in time with an explicit Mc-
Cormack scheme (McCormack 1981). This scheme is second-order accurate in space
and time, and is suited for unsteady computations. The Courant–Friedrichs–Lewy
number (CFL) is taken equal to 0.9. No artificial viscosity is used besides the low
inherent dissipation of the scheme. The Cartesian two-dimensional grid is stretched
from the extremity of the splitter plate in both y1- and y2-directions, and is defined
in table 2. The splitter plate itself is not included in the computational domain,
and is represented via the inflow profiles. All variables are imposed at the inflow,
with constant density and temperature on each side of the shear layer origin, and
constant pressure throughout the inflow. Two laminar boundary layer velocity pro-
files with same momentum thickness δθ0 are prescribed on each side of the splitter
plate, the tip of which is simulated by one node with zero velocity. The Reynolds
number Re = Uaδθ0/µa is 2 000. Finally, constant profiles are given for k and ε,
with k = (0.002Ua)

2 and ε = ρak
2/µa, but it has already been reported, and observed

again here, that these initial values can be varied by several orders of magnitude
with negligible impact on the established solution. For the shear layer case it is
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Direction Domain size Number of points ∆ymin ∆ymax Grid stretching

y1 7 500 (15 000) 180 (232) 10 110 (220) 1.3%
y2 3 000 (6 000) 100 (123) 5 95 (187) 3.0%

Table 2. The shear layer computational grid. All dimensions are expressed in terms of the initial
momentum thickness δθ0. Data are given for the physical part of the computational domain, and
when between parenthesis for the complete domain (including the dissipation zone).

not necessary to introduce any time-dependent forcing: prescribed inflow profiles are
steady. In this respect and as discussed further below, the jet case is different.

As prescribed in Colonius, Lele & Moin (1993), the computational domain is
extended in the streamwise direction and on the sides by an artificial absorption
layer which progressively damps disturbances to make the boundary conditions
treatment easier. As may be seen from table 2 the complete domain including this
dissipation layer is exactly twice the size in both directions of the physical part
of the domain alone. The grid stretching is continuous all across the complete
domain. In the following only the flow computed in the physical domain is presented.
Neumann conditions are applied on the lateral boundaries. Finally characteristics-
based non-reflecting outflow boundary conditions discussed by Poinsot & Lele (1992)
are implemented at the outflow. The combination of a dissipation layer with high-
quality boundary conditions shows excellent performance at moderate cost and seems
at the present time the best way to handle unsteady compressible computations of
free shear flows.

It may be pointed out here that Lighthill’s theory basically requires knowledge
of the turbulent flow. It is not necessary to accurately represent the propagation of
acoustic waves over many wavelengths, which would demand a significantly larger
computational effort.

With these practical conditions, figure 3 shows an instantaneous view of each
shear layer. The passive scalar field has been chosen as it allows clear visualizations
of the large-scale structures which are of special interest here. The similarity with
experimental shadowgraphs is striking. The view is taken long after the first structure
has been convected out of the calculation domain, so that the flow is fully developed.
This takes a time t0 = L/Uc where L is the domain length and Uc the structures
convection speed. In the shear layer, Uc may be estimated as (see e.g. Dimotakis 1986)

Uc =
Uacb +Ubca

ca + cb
.

2.2.2. The growth rate

The local vorticity thickness δω is estimated as

δω =
∆U

|∂〈ũ1〉/∂y2|max
.

Two points concerning the time average are worth noting. First, the traditional
expression for δω contains 〈u1〉, which has been replaced here by 〈ũ1〉. But it is
straightforward to find out that for any variable Φ

〈Φ̃〉 − 〈Φ〉 = 〈Φ̃〉 − 〈Φ〉 =

〈
ρ′Φ′

ρ

〉
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Figure 4. Development of the shear layers. (a) Vorticity thickness δω: ——, case 1 (Mc = 0.19);
– – – –, case 2 (Mc = 0.33); — ·—, case 3 (Mc = 0.52); all distances are reduced by the initial
momentum thickness. (b) Reduced Pitot growth rates δ′′pit with respect to convective Mach number
Mc: open squares correspond to data of Papamoschou & Roshko (1988); stars indicate present
calculations.

so that ∣∣∣∣〈Φ̃〉 − 〈Φ〉〈Φ〉

∣∣∣∣ 6
[〈

ρ′2

ρ2

〉
〈Φ′2〉
〈Φ〉2

]1/2

,

from which it is possible to assume that 〈Φ̃〉 ≈ 〈Φ〉. Also it is important to ensure
statistical stability of the average values. This is achieved well by starting the averaging
at time t0 and summing over a total time exceeding 3t0.
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The evolution of δω along the streamwise direction is represented in figure 4(a) for
the three cases. It is possible to verify that the flow grows linearly. For case 3, the
value of the vorticity growth rate

δ′ω =
dδω
dy1

obtained from the present curve, that is 0.075, is close to the experimental value
of 0.079 given by Samimy & Elliott (1990). More generally, different authors (e.g.
Bogdanoff 1983; Papamoschou & Roshko 1988) have shown that the convective
Mach number Mc characterizes compressibility, so that the growth rate scaled by its
‘incompressible value’ is a function of Mc only. The normalized Pitot growth rates
δ′′pit are plotted in figure 4(b) for the three shear layers along with the experimental
data of Papamoschou & Roshko (1988). The Pitot thickness δpit is defined as the
difference between the two transverse locations where the total pressure (or Pitot
pressure) differs by 5% from its asymptotic value on each side of the mixing layer.
The incompressible Pitot growth rate is estimated by Papamoschou & Roshko (1988)
as

δ′pit,0 = 0.14
(1− r)(1 + s1/2)

1 + r s1/2

and by definition the normalized Pitot growth rate is

δ′′pit =
δ′pit

δ′pit,0

.

The three numerical points follow reasonably well the experimental trend, taking into
account that the experimental accuracy is 10% for the growth rate measurements.
For case 2, where the comparison is direct since the numerical and experimental shear
layers are the same, the two corresponding points are nearly superposed.

One may note from figure 3 or 4(a) that the absolute growth rate of the second
shear layer (case 2) is much lower than the two others (cases 1 and 3). This is due
to the high value of the velocity ratio for this case. On the other hand the reduced
growth rates δ′′pit, where compressibility effects are corrected for, are decreasing in the
order case 1, 2 and 3 (see figure 4b), in agreement with experimental observations.
Compressibility effects are thus well captured by the computation.

2.2.3. Self-similarity

Similarity profiles of the streamwise velocity are shown in figure 5 (a,b,c). It is
possible to verify that self-similarity has already been achieved at y1/δθ0 = 1000 for
cases 1 and 3 while it is necessary to reach y1/δθ0 = 2500 for case 2. Anyway, it is
always attained long before the end of the computational domain.

Before considering the streamwise turbulence self-similarity, a delicate problem
must be pointed out. The experimental definition of streamwise turbulence is based
on the r.m.s. velocity fluctuations:

σ1 = (〈u2
1〉 − 〈u1〉2)1/2.

It is not possible to identify this quantity with the r.m.s. velocity fluctuations that
are computed using SDM where only coherent fluctuations are calculated. In fact,
u1 = ũ1 + u′′1 and as explained above, the coherent and incoherent motions are
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Figure 5. Similarity profiles. (a–c) Streamwise velocity; (d–f ) streamwise turbulence. (a,d ) case 1
(Mc = 0.19); (b,e) case 2 (Mc = 0.33); (c,f ) case 3 (Mc = 0.52). 3, y1/δθ0 = 1 000; +, y1/δθ0 = 2 500;
2, y1/δθ0 = 4 000; ×, y1/δθ0 = 5 500; 4, y1/δθ0 = 7 000.

supposed not to be correlated in time so that

〈ũ1u
′′
1〉 = 0.

This yields

σ1 = (σ̃2
1 + σ′′1

2
)1/2, (2.2)

where

σ̃1 = (〈ũ2
1〉 − 〈ũ1〉2)1/2,

σ′′1 = (〈u′′1
2〉)1/2.
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Figure 6. Streamwise evolution of the centreline r.m.s. velocity fluctuations in the shear layer.
(a) case 1 (Mc = 0.19); (b) case 3 (Mc = 0.52). ——, total fluctuations σ1/∆U; – – – –, coherent
fluctuations σ̃1/∆U;— ·—, random fluctuations σ′′1/∆U.

The coherent r.m.s. fluctuation σ̃1 is directly obtained from the calculation while the
random part σ′′1 is deduced from the fine-grained turbulence model. Though it is not
absolutely rigorous, let us assume that

〈νtũ1〉 ≈ 〈νt〉〈ũ1〉,

where νt is µt/ρ. One may then deduce from (2.1) that

σ′′1
2

= − 2
3
〈νt〉

[
2
∂〈ũ1〉
∂y1

− ∂〈ũ2〉
∂y2

]
+ 2

3
〈k〉. (2.3)

In the following the total r.m.s. velocity fluctuation σ1 will be evaluated with (2.2)
where the coherent r.m.s. fluctuation σ̃1 is estimated from the time history of ũ1 while
the incoherent r.m.s. fluctuation σ′′1 is modelled with (2.3). It must be stressed that
there are many approximations underlying (2.3), which must be considered with care.
Yet, this seems the best way to take into account the contributions of both coherent
and incoherent turbulence.

Thus, the similarity profiles of the total streamwise turbulence are plotted in
figure 5 (d,e,f ). In agreement with experimental observations, self-similarity is attained
later and less clearly than for the mean flow profiles. The distance necessary is at
least 4000 δθ0 and it is hardly attained for case 1, for which we may invoke the fact
that the ‘development length’ for turbulence quantities is longer for low convective
Mach numbers (see e.g. Goebel & Dutton 1991). The peak value of σ1 normalized by
∆U reaches a constant value for cases 1 and 2 of respectively 16% and 13% which
is reasonable. For case 3, the normalized streamwise turbulence peak level may be
compared favourably to the value of 17% indicated by Samimy & Elliott (1990). It
may be noticed that some turbulence profiles show a lower secondary peak on the
low-speed side. It is not known if this feature is important but it is indeed observed
in some experimental profiles, e.g. measured by Barre, Quine & Dussauge (1994).

Now that the streamwise evolution of the total longitudinal turbulence has been
illustrated, it is interesting to see more precisely how the two components σ̃1 and σ′′1
behave independently. This may be observed in figure 6 (a,b) for cases 1 and 3. The
situation is especially clear for the first case (figure 6a): if the transition zone that lasts



274 F. Bastin, P. Lafon and S. Candel

0

–20

–40

0 0.005 0.010 0.015

fp

PSD(db)

fdh0/UM

Figure 7. Estimation of the power spectral density of the centreline axial velocity fluctuations for
the shear layer 1 at y1/δθ0 = 500. The spectrum is plotted on an arbitrary decibel scale. The peak
frequency is indicated by an arrow. The Fourier transform is performed on 15 segments of 512
points with a 50% overlap begore averaging. The spectral resolution is ∆f δθ0/UM = 5.6× 10−5.

about 1000 δθ0 (a fact that can be deduced from figure 5d ) is ignored, the coherent
u1 standard deviation σ̃1 increases with respect to y1 whereas σ′′1 slightly decreases
so that the resulting total turbulence σ1 is roughly constant. Thus, σ̃1 profiles would
not be self-similar and it is indeed essential to add the contribution of the modelled
incoherent motion. Moreover, this opposite evolution of σ̃1 and σ′′1 reflects an energy
transfer between the coherent and fine-grained turbulence components. The energy
coupling between ũ1 and u′′1 is smaller for case 3 (figure 6b), but here again the total
turbulence level obtained by adding coherent and stochastic contributions shows
streamwise variations that do not exceed 5%.

2.2.4. Spectral contents of the fluctuations

The study of the similarity of the turbulence level only involves the standard
deviation of the coherent motion velocity. The observation of the temporal spectrum
of its fluctuations gives more insight into the coherent structures.

It is well known that the power spectral density of the velocity fluctuations measured
in the middle of the shear layer peaks at a frequency fp corresponding to the
convection of the large-scale structures. Indeed a typical spectrum obtained from the
computation of the first shear layer is shown in figure 7, where fp can be clearly
identified. The linear instability theory is a relevant method to get an estimate of the
expected location of the spectrum peak. Thus the mean flow at a given streamwise
location y1 may be considered as a spatial amplifier for perturbations with appropriate
frequency, and it has already been observed that the frequency f(i)

p corresponding to
maximum spatial amplification rate provides a good prediction for fp. For details on
the application of the instability theory to convectively unstable flows the reader is
referred to Huerre & Monkewitz (1990). Typically, the inviscid compressible theory
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Figure 8. Centreline spectral development in the shear layer. (a) case 1 (Mc = 0.19); (b) case 2
(Mc = 0.33). ——, Peak frequency measured from numerical simulation; – – – –, prediction of the
linear instability theory.

is here applied to a locally parallel shear flow and yields

f(i)
p = St0

UM

δω
,

where the value of the Strouhal number St0 corresponds to a given mixing layer. The
streamwise evolution of the frequency fp determined from numerical spectra is shown
in figure 8 for cases 1 and 2, together with the prediction f(i)

p from linear instability
analysis. Apart again from the short zone (y1/δθ0 < 1 000) needed to establish the
fully developed flow, the agreement observed is a strong indication that the coherent
fluctuations of the flow are well captured by the computation.

2.3. The Cµ parameter

The influence of the Cµ parameter is now studied. The shear layers 1 and 3 have
been calculated with Cµ = 0.05 (instead of its traditional 0.09 value), all the other
parameters being unchanged. There is no apparent modification of the coherent
structure development. The mean flow grows linearly as in figure 3. The growth rate
is slightly increased for the first shear layer: for example, the reduced Pitot growth
rate δ′′pit changes from 0.87 to 0.93. There is almost no modification for case 3, where
δ′′pit changes from 0.58 to 0.59. Thus, roughly speaking, the mean flow is unchanged,
except perhaps that self-similarity is systematically reached further downstream than
for Cµ = 0.09. It is also possible to verify that the spectral development of the
fluctuations is unchanged, meaning that the peak frequency of the aerodynamic
spectra still evolves as shown in figure 8.

The principal modification concerns the energy balance between the computed
coherent structures and the modelled stochastic motion. To show this, the streamwise
evolution of the coherent, random and total fluctuation levels is plotted in figure 9
for the two shear layers 1 and 3. This must be compared to figure 6, showing the
same evolution with the standard Cµ. Clearly, the incoherent motion level is a little
lower with decreased Cµ while the coherent fluctuations level has increased. Owing to
a different initial ratio of the coherent to incoherent motion in the two shear layers,
the net effect on the total turbulence level is nearly zero for shear layer 3 while it
is positive for shear layer 1, for which it increases from about 15% to 25%. This
analysis is probably affected by the fact that full self-similarity is not attained for the
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Figure 9. Streamwise evolution of the r.m.s. velocity fluctuations in the shear layer. Calculations
with Cµ = 0.05. Same conventions as in figure 6.

turbulent variables, so that turbulence levels have not yet reached their asymptotic
values. Nevertheless, there is no doubt that the clearest effect of decreasing Cµ is to
draw some energy from the incoherent motion (essentially modelled by the turbulent
kinetic energy k) and to add some to the computed coherent fluctuations. Of course
the details of the influence of a modification of Cµ may be a little more complicated
but the procedure we adopt in the following is to use a value for which significant
coherent motion can be observed, and then to compare the associated turbulence
level to experimental data. It is shown in the next section that the amplitude of
the coherent motion tends to be overestimated in jet flows, which in turn affects the
evaluation of the radiated noise.

3. Plane jet flow computations
The two-dimensional mixing layer is a common test case for flow computations but

is not suitable for noise calculations for several reasons. The source volume occupied
by the turbulent flow is theoretically not limited in the streamwise direction which
makes it difficult to evaluate the radiated noise, except by DNS. Besides, there is
very little experimental data on shear layer noise and, in the absence of any other
characteristic length scale, the results are highly dependent on the axial extent of the
flow.

Thus, the jet case must be considered. In a first step, three-dimensional calculations
are dismissed, so that the choice remains between the axisymmetric and the plane
configuration. An axisymmetric jet featuring two-dimensional coherent structures (i.e.
annular vortices) would be at first sight closer to reality than the plane jet. However
such axisymmetric calculations would not capture helical large-scale instabilities
which are known to be sometimes more efficient noise sources than axisymmetric
ones. Moreover, both aerodynamic and acoustic computations are easier in the plane
configuration. This is why this article deals with plane jet noise computations.

The present approach is not suitable for the prediction of shock-associated noise,
for which specific models have to be developed, but only for mixing noise, so that
only perfectly expanded jets are considered. For simplicity in the implementation of
Lighthill’s analogy and to begin with, the temperature ratio between the jet and the



Computation of jet mixing noise due to coherent structures 277

M Direction Domain size No. of points Min. mesh spacing Max. mesh spacing

0.50 y1 25 142 0.08 0.32
y2 25 144 0.06 0.47

1.33 y1 30 155 0.05 0.50
y2 20 156 0.04 0.36

Table 3. The plane jet computational grid. All dimensions are normalized by D.
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Figure 10. Mean inlet velocity profile for the subsonic jet (M = 0.50).

ambient fluid is kept constant and equal to 1 and only the exit Mach number is varied.
Hence, two cold two-dimensional fully expanded jets have been calculated, at Mach
numbers M = 0.50 and 1.33. The exit velocity is denoted UJ . The corresponding
computational grids are described in table 3 where all dimensions are normalized by
the nozzle height D. The nozzle itself is not included in the computational domain.
Here again, y1 and y2 are the streamwise and transverse coordinates. The nozzle is
centred on y2 = 0.

Unless otherwise stated the calculations are performed in the same conditions as
the shear layers. A notable exception is the inflow boundary conditions: all variables
are imposed at the nozzle exit with a top-hat velocity profile, the nozzle lip is
represented by one node with zero velocity, and the characteristics-based conditions
that were already applied at the outflow are now used at the inflow outside the
nozzle. To replace the incoming characteristics, the total pressure, total temperature
and transverse velocity are imposed. A classical inlet velocity profile then naturally
establishes as shown in figure 10 for the subsonic jet.

A more important difference with the shear layer must be indicated: if steady
profiles are imposed at the nozzle exhaust, the coherent motion eventually vanishes.
More precisely the structures are born in the two shear layers developing from
the edges of the nozzle and grow normally as they are convected, but after the
computational domain has been passed through two or three times by the flow the
structure production suddenly stops. After the last structures have been convected
out, the flow becomes nearly steady. This raises the fundamental problem of the
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creation of the coherent structures. From an instability point of view, there must be
some germ at the flow origin (we speak here of convectively unstable flows) and the
perturbations are then amplified according to the theory. Experimentally, clean as the
set-up may be, there is always some turbulence noise, especially in the boundary layers
inside the nozzle, so that the starting of the structures is ensured, not to mention the
case of a forced jet when the excitation is controlled. Numerically, the origin of the
structures in the absence of excitation is not perfectly clear. Buell & Huerre (1988)
suggest that some low-level numerical noise induced by spurious reflections at the
outflow boundary condition may provide the necessary excitation. This explanation
is reasonable but the study of the velocity spectra in §2 (see figure 8) shows that there
is no strong phase locking of the coherent motion by such a mechanism. In other
words, the structure production may be due to numerical noise but for our purpose
it is random enough to mimic turbulence noise and natural shear layers (in contrast
with excited shear layers).

With the hypothesis of Buell & Huerre (1988) in mind, it seems that the numerical
noise level is not sufficient in the plane jet configuration. Thus, it becomes necessary
to perturb the inlet profiles. The excitation must be designed with care so that it does
not control the flow development. Besides, no spurious acoustic disturbances must be
introduced in the flow. For this, let us consider the Euler equations linearized around
the mean flow at the nozzle exit, i.e. with density ρJ +δρ, pressure P +δp, streamwise
velocity UJ + δu1 and transverse velocity δu2. It is possible to show (see e.g. Giles
1990) that the disturbances which may propagate in the y1-direction must be a linear
combination of an entropy wave with phase speed UJ , a vorticity wave with phase
speed UJ and two acoustic waves with phase speeds UJ ± c, where c is the speed of
sound. The Riemann invariants associated with each of these waves are respectively
δρ−δp/c2, δu2 and δp±ρJcδu1. No acoustic wave should appear in the flow because
of the excitation. For reasons given in §4, entropy variations must also be avoided.
The excitation must then have

δρ− δp/c2 = 0,

δp± ρJcδu1 = 0,

so that δρ = δp = δu1 = 0, which means that only the transverse velocity may be
perturbed. The following profile is imposed:

δu2 = β UJ ε(t)Θ(y2), (3.1)

where β is a parameter that is kept at 0.005, ε(t) is a zero-mean pseudo-random
function with standard deviation 1 and Θ(y2) a shape function peaking at 1 (see
figure 11 a,b).

As shown experimentally, e.g. by Shih, Krothapalli & Gogieni (1992), the plane
jet flow ‘preferred mode’, i.e. the frequency most likely to be amplified by the flow,
corresponds to a Strouhal number St between 0.1 and 0.25 where St = fD/UJ . As
the initial shear layers are certainly sensitive to higher frequencies, this band has been
broadened on the high-frequency side and ε(t) is constructed so that the corresponding
spectrum ε(f) is flat between St = 0.2 and St = 0.5 (see figure 11 a). To obtain a
peudo-random function ε(t), an inverse Fourier transform is performed from a finely
discretized spectrum where all the components have been put randomly out of phase
with each other. For the shape function, it has been observed that the preferred mode
of a plane jet is generally antisymmetric (see Shih et al. 1992; Thomas & Goldschmidt
1986) and Θ has been chosen to feature this property and to be zero on the nozzle
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Figure 11. Nozzle inlet excitation used for the jet calculations δu2 = β UJ ε(t)Θ(y2). (a) Shape of
the excitation spectrum ε(f) with arbitrary vertical units. (b) Excitation spatial shape Θ(y2).

walls for continuity:

Θ(y2) = cos2
(y2π

D

)
for |y2| 6 1

2
D.

The maximum amplitude of the excitation function, here 0.5% of the exit velocity,
should not be an important parameter provided it is low enough. This will be verified
in the following. We mean that the intensity of the fluctuations induced by the
excitation is expected to be determined by nonlinear saturation phenomena and not
to be scaled by the excitation itself.

After a set of preliminary tests it was found that it was much easier to maintain
coherent perturbations with low excitation levels when the constant Cµ was reduced,
in agreement with Ha Minh’s (1994) observations. Consequently, the plane jets were
computed with Cµ = 0.05.

Snapshots of the two flows are displayed in figure 12 in the form of passive scalar
contours. The evolution with increasing Mach number is quite clear. In the subsonic
jet, the two shear layers developing from the edges of the nozzle grow rapidly and
show large and distinct coherent structures. Correspondingly, the potential region
of the jet seems short. The situation is different for the supersonic jet, developing
more slowly and where the large structures look more like an oscillation of the jet
column. Before quantifying these observations, let us mention that the general aspect
of coherent structures when M is varied is in agreement with experimental findings:
consider e.g. the spectacular vortex rings in a low-speed jet in Longmire & Eaton
(1994) in contrast with the wave-like coherent fluctuations shown by Lepicovsky et
al. (1985) for a jet at Mach number 1.37, in both cases with circular nozzle.

The potential core extension with increasing Mach number is confirmed in figure
13, where the centreline velocity profile is plotted for the two jets, along with an
experimental profile from Kouts & Yu (1974) for a rectangular jet at M = 0.50 with
a nozzle aspect ratio A = 10. The collapse of numerical and experimental results for
the subsonic jet should not be given a meaning that it has not. The numerical curve
was obtained from a two-dimensional plane calculation while the experimental flow
is a rectangular jet with an aspect ratio that is not so high that three-dimensional
effects may be completely neglected. Thus, one should not conclude that reality is
perfectly described by the computation. However, this proves that quite reasonable
aerodynamic results may be obtained with SDM on realistic spatially evolving jet
flows, which to the best of our knowledge has not yet been observed with LES.
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Figure 12. Instantaneous passive scalar field in the plane jet flows. (a) M = 0.50; (b) M = 1.33.
Same conventions as in figure 3.
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Figure 14. The jets mean flow development. (a,b) Transverse profiles of streamwise velocity; (c,d )
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For the supersonic jet, we are not aware of any relevant experimental data but
the evolution from the subsonic jet is similar to what can be observed for circular
jets. More generally, there seem to be very few aerodynamic experimental results for
high-aspect-ratio rectangular jets, other than very low-speed ones (M 6 0.2). This
is why in the remainder of §3 no further comparison of numerical and experimental
plots can be provided, though a discussion of the results remains possible.

The transverse profiles of streamwise velocity at different x-locations plotted in
figure 14 (a,b) show that the two jets are fully developed at y1 = 20D. The pro-
file obtained when self-similarity is attained may be very well approximated by a
Bickley quasi-Gaussian profile. The total streamwise turbulence profiles plotted in
figure 14 (c,d ) were obtained as in §2 as the sum of the calculated coherent r.m.s.
fluctuation and the incoherent turbulence modelled by (2.3). In contrast with the
velocity profiles, self-similarity is not attained yet. The axial location where the two
shear layer turbulence peaks merge is directly correlated with the end of the potential
core and increases with the Mach number.

The centreline distribution of the total streamwise turbulence intensity is more
precisely seen in figure 15(a). The maximum level attained is 18% of the exit velocity
in the subsonic jet and 15% in the supersonic jet. These values may be compared
to measurements performed by Lau, Morris & Fisher (1979) on circular jets. A
value of about 15% is typically obtained at Mach numbers 0.28 and 0.90 and 13.5%
at Mach number 1.37. Thus, the computed levels are quite reasonable, maybe a
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Figure 15. Streamwise evolution of the centreline r.m.s. velocity fluctuations in the plane jets.
(a) Total fluctuations σ1/UJ ; (b) coherent fluctuations σ̃1/UJ . ——, M = 0.50; – – – –, M = 1.33.

little overestimated for the subsonic jet. But what is more our concern here is the
coherent turbulence level, that is the level of the computed coherent fluctuations.
Figure 15(b) displays the streamwise coherent turbulence level along the centreline.
It appears that the maxima reached for the two jets are respectively 15% and 9%.
Owing to the definition of the coherent structures concept, it is difficult to practically
assess the fraction of the total turbulent energy represented by the coherent motion.
Nevertheless, some authors have attempted to give an estimate of this ratio in jets,
e.g. Mumford (1982) obtained 20% in a low subsonic rectangular jet and Lepicovsky
et al. (1985) observed values of 10% to 20% in a circular jet at Mach number 1.37.
Therefore, considering the data of Lau et al. cited above, we should expect to observe
coherent turbulence levels no higher than 3%. Of course, it is a crude estimate but it
means that the intensity of the computed aerodynamic fluctuations is almost certainly
too high, especially for the subsonic jet. From what has been observed in the shear
layer study, we know that a weaker coherent motion may be obtained by increasing
the turbulence model constant Cµ. However a parametric study with respect to the
value of Cµ would be a difficult task with limited interest. It is not our purpose to
proceed to a complete recalibration of the model in free shear flows, which would
indeed provide the solid basis from which the choice of the Cµ constant could be
established. Thus, at this stage, the aerodynamic calculation is kept as it is. Whereas
the space–time characteristics of the coherent structures are realistic, their intensity is
probably too high. This uncertainty on the coherent motion level should be borne in
mind when considering the acoustic results in §5, in the sense that it correspondingly
affects the absolute level of the computed radiated noise.

As for the shear layer case, the spectral contents of the coherent fluctuations
evolves along the flow. To verify this, the spectra of ũ1 measured in the middle of the
shear layer (or more precisely one of the two shear layers) is shown in figure 16 (a,b)
for each jet at different axial locations. As may be expected from simple dimen-
sional arguments, the spectral densities shift towards lower frequencies as the flow
develops. In fact, various experiments (see e.g. Thomas & Goldschmidt 1986) have
shown that in low-speed plane jets the peak frequency of the cross-spectral density
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Figure 17. Centreline spectral development in the subsonic jet. ——, Peak frequency fp measured
from numerical simulation; – – – –, empirical law f = 0.11Um/b. Only the fully developed region of
the jet, starting about y1 = 5D, is represented.

between streamwise velocities in the jet shear layers evolves according to

fc = 0.11
Um

b
, (3.2)

where Um is the mean centreline velocity and b the velocity profile half-width. In
the fully developed region of the jet, where the two shear layers can no longer be
distinguished anymore, fc is identical to the centreline velocity peak frequency fp, as
defined in figure 7. The empirical law (3.2) evaluated from the computed mean flow
and the peak frequency of the centreline velocity fluctuations spectra are compared
in figure 17 for the subsonic jet.

Two observations can be made from this plot. First, the frequencies of the
computed coherent structures are in accord with the evolution deduced from the
spatial development of the jets. Second and more important, the peak frequency fp is
not a perfectly smooth function of the axial location. This discontinuous behaviour
is more pronounced than in the single shear layer case (compare to figure 8). This
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is partly due to a reduced spectral resolution but it also indicates that the spectra
measured in the jet present a slight discrete character, suggesting that a finite number
of jet instability modes have been excited. Of course, this number is sufficiently
important that the spectra shown in figure 16 contain no distinct peaks, which would
be the signs of a tone-excited jet. Nevertheless, it proves that it was necessary to verify
the spectral contents of the fluctuations before asserting that a reasonable natural jet
had been computed. In fact we previously checked that when the inflow excitation
is too tightly centred near a preferred frequency of the flow, the jet becomes nearly
periodic and the coherent structure development is replaced by a global perturbation
of the flow, where the spectra measured at different spatial locations all show the
same strong peaks. This configuration, more representative of a tone-excited jet, leads
to very poor acoustic results and is of little interest for our present purpose.

4. Numerical implementation of Lighthill’s analogy
In what follows, the sound field is evaluated from Lighthill’s analogy. One restriction

of this framework is that it cannot account for refraction effects. Now these effects
mainly influence high-frequency radiation and are of lesser importance for the sound
emission of large-scale turbulence components. Nevertheless we here favour Lighthill’s
approach because it is the most tractable numerically. It is also shown that its
formulation in conjugate space yields a physically appealing interpretation.

4.1. Three possible formulations

In its basic form, the analogy derived by Lighthill in 1952 from the conservation
equations of motion states that(

∂2

∂t2
− c2

0

∂2

∂yi∂yi

)
(ρ− ρ0) =

∂2Tij

∂yi∂yj
, (4.1)

where the subscript 0 denotes quantities at rest and Tij is Lighthill’s tensor:

Tij = ρuiuj + [(P − P0)− c2
0(ρ− ρ0)]δij − τij . (4.2)

In this expression, δij is the Kronecker symbol and τij the viscous stress tensor. It
should be noted that (4.1) is an exact reformulation of Navier–Stokes equations.

In most practical situations, it may be assumed that the source term is non-zero
only in a region of finite extent. Then, for any observation point x exterior to this
source volume V, the application of the Green’s function formalism yields

ρ(x, t)− ρ0 =
1

4πc2
0

∫
V

1

|x− y|
∂2Tij

∂yi∂yj

(
y, t− |x− y|

c0

)
dy. (4.3)

This expression gives the density fluctuations in the region where it is assumed that
the source term, containing the density and speed fluctuations, is zero. The tacit
assumption here is that the fluctuations outside V, of acoustic nature, are negligible
compared to the turbulent fluctuations existing in the source volume so that a
separation may be established between the two regions. The only true limitation
of Lighthill’s analogy is here: phenomena for which no such distinction is possible
cannot be taken into account, two important examples being the refraction of sound
by the mean flow and shock-associated noise. It is, on the other hand, well adapted
to the prediction of jet mixing noise.
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In the far-field approximation, (4.3) becomes

formulation (1) ρa(x, t) =
1

4πc2
0x

∫
V

∂2Tij

∂yi∂yj

(
y, t− |x− y|

c0

)
dy, (4.4)

where ρa designates the acoustic density perturbations and with x = |x|. In the
following, we will refer to (4.4) as the first formulation of Lighthill’s analogy. Another
formulation may be derived by applying the divergence theorem twice (see e.g. Blake
1986). One obtains

ρa(x, t) =
1

4πc2
0x

∫
S

∂Tij

∂yj

(
y, t− |x− y|

c0

)
dSi(y)

+
1

4πc2
0x

∂

∂xi

∫
S
Tij

(
y, t− |x− y|

c0

)
dSj(y)

+
1

4πc2
0x

∂2

∂xi∂xj

∫
V
Tij

(
y, t− |x− y|

c0

)
dy, (4.5)

where S is the surface delimiting V. As V is supposed to enclose the source region,
the surface integrals are zero and after developing the derivations with respect to x
the second formulation reads

formulation (2) ρa(x, t) =
1

4πc4
0x

∫
V

∂2Trr

∂t2

(
y, t− |x− y|

c0

)
dy,

where Trr is the component of Tij in the observer direction:

Trr =
xixj

x2
Tij .

Finally, the third formulation is obtained by taking the Fourier transform in time of
the previous one and applying the far-field approximation:

formulation (3) ρa(x, ω) = −exp(iωx/c0)

4πc4
0x

ω2 Trr

(
κ =

ω

c0

x

x
, ω

)
,

where the space and time Fourier transforms are defined by

g(κ, ω) =

∫
g(y, t) exp[−i(κ · y − ωt)] dy dt.

The same notation is used for the function and its transform, the arguments employed
removing any ambiguity.

The previous expressions yield different theoretical interpretations. Formulations (1)
and (2) indicate that the sound produced at the observation point x at time t is given
by the contributions of the source term at retarded time. In the limit of low-
Mach-number flows, the source term is compact and the effect of the variation of
retarded time within the source volume is nearly negligible, except for the fact that it
prevents the complete cancellation of the integral in formulation (1). Thus, valuable
predictions concerning low-speed jet noise have been obtained analytically from these
formulations by Lighthill (1952), the most famous one being probably the dimensional
law accounting for the growth of the radiated acoustic power with the eighth power
of the exit velocity.

Ffowcs Williams showed in 1963 that formulation (3) leads to a simple explanation
of the evolution of jet noise over a wide range of Mach numbers. We will show in this
paper that the analysis of this formulation, which is also evoked by Crighton (1975),
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provides an illuminating interpretation of the corresponding acoustic computations.
For this, let us consider the sound emitted in the plane (y1y2), i.e. with no azimuthal
angle, in the direction making an angle θ with the jet downstream direction (the y1-
axis). On one hand, formulation (3) shows that the space–time Fourier components
of the source term Trr that contribute to the radiated noise are those for which κ
points towards the observer and such that

ω = κc0, (4.6)

where κ = κx/x. On the other hand, the distribution of Trr in the conjugate (κ, ω)-
space is strongly influenced by the convection effect of the mean flow. Thus, in
a jet, the aerodynamic fluctuations are known to be essentially convected at speed
Uc parallel to the mean flow. In fact, Uc may be interpreted as the convection
speed of the large-scale structures, on which is superimposed the fine-scale turbulent
motion. Of course, this is a simplified representation of the turbulence in a jet flow
and from another point of view, this convection speed is the group velocity of the
instabilities supported by the mean flow and must be local and frequency-dependent.
Nevertheless, the frequently used assumption of constant Uc in free shear flows is
known to be reasonable. In the wavenumber–frequency space, this means that the
source term in Lighthill’s analogy will attain its maximum when

ω = κ ·U c,

which becomes, when κ is aligned with the observer direction x,

ω = κUc cos θ. (4.7)

Interesting features of jet mixing noise can be understood by considering the
relative position of the sonic line defined by (4.6) of the spectral components that
effectively radiate and the convection line given by (4.7) around which the source term
is localized. The basis of this interpretation is illustrated in figure 18 (a,b).

The situation where the convective Mach number Mc = Uc/c0 is less than 1 is shown
in figure 18(a). For a 0◦ observation angle, i.e. when the observer is downstream on
the jet axis, the slope of the convection line is lower than that of the sonic line. Only
a small part of the dominant source term components contribute to the radiated
noise. When the observation angle increases, the convection line slope is reduced and
the contribution of the source term to the sound field is even lower. The directivity
should then be maximum for θ = 0◦ and slowly decreasing with θ.

On the other hand, if the convection speed is supersonic (Mc > 1) (see figure 18b),
when θ = 0◦ the slope of the convection line is higher than that of the sonic line.
As θ increases, the two lines come closer to each other and most of the coherent
fluctuations contribute to the radiated noise. The lines are superposed for θ0, verifying

cos θ0 =
1

Mc

, (4.8)

and the convection line moves away again for θ > θ0. In this case the sound directivity
may be expected to be strongly peaked around the angle θ0, determined by (4.8).
For this particular angle, the structure convection speed seen by the observer, i.e.
projected on the observation direction, is precisely the speed of sound c0. The strong
radiation corresponding to this case is thus a Mach wave radiation and θ0 is the
Mach wave angle.

The ratio of the convection velocity to the jet exit speed is usually estimated at
two thirds for a circular jet. Then, for a cold jet the transition between the two
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Figure 18. Interpretation of Lighthill’s analogy in (κ, ω)-space. (a) Situation where Uc < c0; (b)
situation where Uc > c0. The convection line is plotted for an observation angle θ = 0 and the
curved arrow indicates its evolution when θ increases. The shaded area represents the expected
localization of the source term along the convection line.

situations just described should occur for M ' 1.5, which make the two computed
jets representative of the first case (Mc < 1). However, following this interpretation,
the supersonic jet should feature a directivity much more strongly peaked at θ = 0◦

than the subsonic jet, as will be verified in §5.

The qualitative prediction of the directivity changes with the jet Mach number, di-
rectly derived from the analysis of formulation (3), is in agreement with experimental
data on fully expanded jet noise. An exception is the directivity drop-off at small ob-
servation angles due to refraction, which cannot be captured via Lighthill’s approach.
More generally, the formulation of Lighthill’s analogy expressed in (κ, ω)-space pro-
vides a geometrical interpretation which, as shown in §5 proves extremely useful for
understanding acoustic computations. The computed directivity and the radiation
spectra may be analysed in connection with the space–time spectral distribution of
the source term.
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4.2. The choice of a formulation

The three formulations of Lighthill’s analogy given previously are based on the same
source term Tij . This quantity is the sum of three terms as may be seen from (4.2): the
Reynolds stress tensor ρuiuj , a term describing the deviation from isentropy and the
opposite of the viscous stress tensor. For high-Reynolds-number flows it is well-known
that the third term is negligible compared to the first one. The second term should in
principle be retained. However, in the particular case where the temperature in the
jet is equal to the ambient temperature, the local speed of sound may be expected
to show little variations from c0. Besides, the heat dissipation effects are of the same
magnitude as the viscous effects and can be neglected, so that in the absence of any
shocks, i.e. for a fully expanded jet, the flow may be considered isentropic and the
second term can also be neglected. Yet, this approximation is not fundamental: here
we use it in a first step to simplify the calculations but this it is not essential and
the present approach could be extended to treat hot jets. Under these conditions, one
has

Tij ' ρuiuj .
It is worth noting that the formulations introduced in §4.1 are explicit though the
variable ρ appears on both sides of these equations, and this because the observation
point x is outside the integration volume. Thus, there is no need to replace ρ by ρ0

in the expression for Tij and the source term does contain the fluctuating density as
well as the fluctuating turbulent velocity.

In the aerodynamic computations described in §3, the three variables ρ, u1 and
u2 are stored with a time increment between two storages of 0.50D/UJ , so that the
maximum frequency that can be explored corresponds to St = 1. Because of the
assumption of two-dimensional coherent motion, the spanwise velocity component u3

is zero. The data storage begins only when the flow may be assumed fully developed,
that is after the computational domain has been passed through at least once. 1024
time steps are recorded, which is the result of a compromise between the desired
spectral resolution and storage capacity considerations.

In formulation (1), the source term is the double divergence of Lighthill’s tensor.
The tensor is symmetric and three non-zero components must be evaluated. The
spatial derivatives are estimated with second-order finite difference approximation
on a nine-point stencil. If the evolution of the mesh size in each direction is slow,
the truncation error depends quadratically of the spatial grid step. Note that for a
realistic flow field such as the jet flow, the source term is not spatially periodic, and it
is not suitable to evaluate the spatial derivatives in the Fourier-transformed space. To
obtain the sound field at time t, the source term must be evaluated at retarded time
t − |x − y|/c0. To be consistent with the derivation of formulation (3), this retarded
time is evaluated in the Fraunhofer approximation:

t− |x− y|
c0

' t− x

c0

+
x · y
c0x

. (4.9)

However, the source term is available only on a discrete space–time grid. As is shown
by Sarkar & Hussaini (1993), it is dangerous to simply replace the true retarded time
by the closest time for which the source term is available. Therefore, it is necessary to
proceed to a spatial or temporal interpolation. It is much simpler to use a temporal
interpolation so that, for each grid point y, the source term at retarded time is
estimated by linear interpolation in time.
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The trapezoidal rule is used for spatial integration. It is easily shown that the time
average of the source term does not radiate. Indeed:∫

V

∂2〈Tij〉
∂yi∂yj

(y) dy = 0,

and thus only the fluctuations of the source term need to be retained. Besides, some
precautions have to be taken so that truncation effects would not strongly influence
the computed acoustic field. This is achieved by tapering the fluctuations of ∂ijTij on
the edges of the source volume by a decreasing Gaussian.

The radiated sound field may then be calculated when the source term is known
at retarded time all over the computational domain, that is during a time interval
slightly shorter than the time interval during which the source term was stored. It is
straightforward to see that the difference between these two intervals is roughly the
retarded time lag between the two most distant points in the source volume, that is
about L/c0 where L is the source volume length (and largest dimension). Thus, the
radiated noise is calculated for 1024 evenly spaced times with a time step slightly
lower than the initial storage step. The spectral analysis of this signal is then obtained
by averaging 15 segments of 128 points with a 50% overlap. A temporal Hann
square-sine window, which presents a high sidelobe decay rate, is applied to each
segment.

Computations with formulation (2) are quite similar to those described above,
except that temporal second derivatives of Tij have to be evaluated instead of spatial
derivatives. This term is estimated through a second-order centred finite difference
approximation:

∂Tij

∂t2
(t) =

Tij(t− ∆t)− 2Tij(t) + Tij(t+ ∆t)

∆t2
+ O(∆t2). (4.10)

Formulation (3) expressed in the Fourier-transformed space requires different pro-
cessing. The space–time spectral contents of Lighthill’s tensor has to be evaluated
on the sonic line, determined by (4.6). Because wavenumber and frequency are not
independent, it is not helpful to use a fast Fourier transform algorithm and the
space–time Fourier integral is calculated directly via the trapezoidal rule. As for
the first two formulations, the source term is modulated on the edges of the source
volume and the integral is performed on 15 overlapping time segments of 128 points
each on which the spectral density is averaged.

Before discussing the results obtained with each of the three formulations, a few
precautions taken to scale the acoustic data should be mentioned. The three formu-
lations involve a spatial integration over the source volume. In the computations,
what is available is a two-dimensional source surface and some modelling of the
structure in the third dimension (y3) must be introduced to allow comparisons with
three-dimensional rectangular jet noise data. Let us consider a rectangular jet with
nozzle dimensions D and AD, where A is the nozzle aspect ratio. The plane jet
computation is supposed to represent the development of this real jet in the (y1, y2)-
plane containing the nozzle dimension D. This is reasonable only ifA is high enough
(say more than 10), for then rectangular jets may exhibit two-dimensional large-scale
coherent structures. Now, for simplicity, the point of observation x will be kept in
the (y1, y2)-plane (see figure 19). In other words, only the radiation of the jet at zero
azimuthal angle is considered. The observation point is then completely determined
by knowing the observation distance x and the polar angle θ. Consequently, as may
be seen from (4.9), all points located on a line parallel to the y3-direction emit in
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Figure 19. Definition of nozzle geometry and acoustic observation point coordinates.

phase, and at first sight the y3 integration of the source term introduces a factor
AD. The acoustic intensity would then scale with A2, though it is known to scale
with the nozzle exit surface, i.e. with A. The paradox is removed if we consider that
it is not realistic to assume that the coherent fluctuations are completely correlated
in the y3-direction. Thus, it is necessary to introduce a correlation width Λ of the
fluctuations. Considering the approximation level of a rectangular jet by a plane jet,
it does not seem relevant to set a complicated expression for Λ and we will assume
that Λ is simply proportional to D with a factor α:

Λ = αD. (4.11)

The rectangular jet of spanwise extent AD may then be decomposed into elementary
jets of width 2Λ completely uncorrelated with each other so that the total acoustic
intensity defined by

I =
c3
o

ρ0

〈ρ2
a〉

is the sum of the intensity produced by these jets and reads

I = 2αAD2 c
3
o

ρ0

〈ρ2
a,2D〉, (4.12)

where ρa,2D is the acoustic density obtained after a two-dimensional spatial integration,
having the dimension of a density per metre. With (4.12) the dependence of I on
the nozzle surface, here AD2, is recovered. Moreover, I scales with 1/x2 which is
a characteristic of the far-field radiation. It is then convenient to use the following
scaling of the acoustic intensity:

I = 2α
c3
o

ρ0

〈x2ρ2
a,2D〉.

In the following we will refer to I simply as the intensity. Correspondingly, the
experimental data scaling is

I =
x2I

S
,

where S is the nozzle exit surface.
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Figure 20. Comparison of the far-field noise spectra obtained with the three formulations of
Lighthill’s analogy at M = 0.50. (a) θ = 30◦; (b) θ = 90◦. ——, formulation (1); – – – –,
formulation (2); — ·—, formulation (3).

The spectra are plotted with the same scaling and with the one-third octave-
band normalization. The reference level for the decibel scale is 10−12 W m−2 for
the intensity. Note that we adopt the one-third octave-band normalization because
plotted with a logscale for the frequency, it gives a faithful representation of the
acoustic energy distribution over the spectrum, but no averaging over each frequency
band is performed. This means that the intensity at each frequency is simply weighted
by the width of the band that would be centred on it. Therefore the spectrum obtained
still looks like a fine-band spectrum (no peak is suppressed because of averaging over
the local frequency band) but is given the one-third octave-band normalization.

Finally, it is necessary to estimate the value of α. There are very few available data
on the subject but Thomas & Goldschmidt (1986) measured spanwise correlation
functions in a low-Mach-number rectangular jet with an aspect ratio of 48 at various
streamwise locations and obtained values of α ranging from 0.4 to 1.5. It is reasonable
to take α = 1, keeping in mind that a factor 2 change in α produces a shift of 3 dB in
the acoustic intensity.

The practical details having been made clear, the spectra obtained with each
formulation for the subsonic jet are shown in figure 20(a) for θ = 30◦ and figure 20(b)
for θ = 90◦. Quite clearly, formulations (2) and (3) give nearly identical results while
formulation (1) predicts acoustic levels higher by up to 30 dB in the low-frequency
range. To understand this result one may follow the approach of Crighton (1975).
The characteristic time scale of the fluctuations of the source term may be estimated
locally as l/[u] where l is the characteristic size of the structures and [u] a velocity
scale which will be specified below. Correspondingly, the retarded time scale across
a structure, or a coherent eddy, is l/c0. Suppose now that [u] is much lower than
c0. Then, as a first approximation, the variations of retarded time across a structure
may be neglected. Put differently, the observer ‘hears’ each eddy with a global delay
due to propagation but with no perceptible distortion induced by the different times
of emission between different parts of the eddy. Therefore, the time variations of the
acoustic field are directly determined by the time variations of the source term, so
that the typical frequency radiated by an eddy is [u]/l and the associated wavelength
is comparable to lco/[u], which according to our assumption that [u] � c0 is very
large compared to l. This last property is expressed by saying that the sources are
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acoustically compact. In this case, use of formulation (1) may be quite misleading: if
retarded time effects are completely neglected in this formulation, the integral over the
source volume may be transformed via the divergence theorem into a surface integral
that must be zero (since there should not be any sources on this surface). This means
that it is precisely the slight differences of retarded time that prevent the complete
cancellation of sources. Formulation (1) is then extremely sensitive to a proper
treatment of retarded time effects. There is no such problem with formulation (2) and
the difference between the two formulations may be appreciated by considering (4.5)
where the acoustic density given by formulation (1) is expressed as the sum of two
surface integrals and one volume integral. This last integral is exactly the one that after
development yields formulation (2). Thus, the difference between formulations (1)
and (2) appears as the sum of two surface integrals. Theoretically of course, if the
source volume is correctly defined, the surface integrals must vanish. But practically it
would be dangerous to rely on the fact that the aerodynamic computational domain
is large enough to ensure that these integrals are really negligible. In fact, it is seen
in figure 20 that they represent a spurious radiation much more efficient than the
physical one.

Now the question is to characterize the situation in which formulation (1) is not
suitable for numerical estimation of the jet acoustic radiation by specifying [u]. In
fact, for a local observer, the fluctuations of the source term are essentially due to
convection and the relevant speed scale should be taken as Uc. Crighton (1975)
indicates that since the subsonic convection of a frozen eddy does not produce
any acoustic radiation, only the perturbations from the purely convective effect
should be considered. Nevertheless, the coherent structures that develop in the flow
are submitted to important distortions as they are convected and Uc/l remains a
reasonable estimate for the intrinsic rate of change of structures of size l. More
precisely, what matters for the preceding analysis is the rate of change seen by the
observer, which means that Uc must be replaced by the apparent convection speed
Uc cos θ. Of course this expression, or rather this equivalent, for [u] is no longer
relevant for θ = 90◦, when the convective effect is zero. In this case the velocity
scale that should be retained is the characteristic speed of turbulent fluctuations
σu. However, except for very high Mach numbers, still quite unusual for typical
applications (say as long as M < 3), the condition σu/c0 � 1 is fulfilled and the
expression Uc cos θ may be kept even for θ around 90◦. Finally the parameter which
determines if formulation (1) is appropriate or not is Mc cos θ, or more simply M cos θ
since Mc and M are of the same order for this purpose. Qualitatively, this means that
it would be unwise to use formulation (1) at low Mach number and near θ = 90◦,
where of course only numerical experiments may allow more precise definitions of
these restrictions.

Thus, coming back to the computed results in figure 20(a) one must conclude
that formulation (1) should be abandoned for M = 0.5. It may be verified in
figure 20(b) that, in agreement with the theoretical analysis, the discrepancy between
formulation (1) on one hand and formulations (2) and (3) on the other hand is
even worse for θ = 90◦. The same comparison of the three formulations is shown
in figure 21 (a,b) for the supersonic jet. This time, for θ = 0◦ (see figure 21a) the
three formulations give very similar results, except perhaps in the low-frequency
range. This may be understood from the fact that low-frequency components are
produced by the largest structures, i.e. in the fully developed region where the velocity
(hence the convection velocity) is lower than the nominal exit velocity. As expected,
formulation (1) yields again an overestimated radiation at θ = 90◦ (see figure 21b).
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Figure 21. Comparison of the three formulations of Lighthill’s analogy for M = 1.33. Same
conventions as in figure 20.

A few observations can still be made from these figures. At high frequency,
all the spectra tend to saturate or even to rise again. This is due to high-frequency
and wavenumber aerodynamic fluctuations present in the early development of the jet
shear layers. For formulation (3) which is expressed as a space–time Fourier transform,
this may be assimilated into an aliasing problem, though the irregular spatial grid
renders the usual theoretical analysis difficult. This spurious high-frequency radiation
can be reduced for example by storing the acoustic source term with smaller time
increments, which is expensive. Nevertheless it is sufficient that the significant part
of the spectra is correctly evaluated, say e.g. that 95% of the energy lies under the
frequency where resolution problems arise. Therefore, in the following we keep this
resolution and only present the meaningful part of the spectra, that is up to the
frequency where the decay of the spectrum presents a discontinuity (typically St = 0.5
for the formulation (2) spectrum in figure 20b). Correspondingly the total radiated
intensity is estimated by only integrating this physical part of the spectrum.

At high frequency also, it may be noted that formulation (3) predicts levels a little
higher than formulation (2) (this is clear in figure 21b). In fact, these two formulations
are exactly equivalent, only expressed in direct or time-Fourier-transformed space.
The only difference resides in the estimation of the second derivative of Trr with
respect to time, which is evaluated by finite differences via (4.10) in formulation (2)
and which produces an exact ω2 factor in formulation (3). It is well known that (4.10)
underestimates high-frequency components by a factor sinc2(ω∆t/2), which explains
the difference observed between the two formulations.

Finally the theoretical analysis of formulation (1) combined with numerical tests
had already led Sarkar & Hussaini (1990) and Witkowska & Juvé (1994) to state
that this formulation was not suitable for numerical estimation of the noise produced
by decaying isotropic homogeneous turbulence with very low turbulent Mach num-
ber. It is shown here for a realistic jet flow configuration that formulation (1) is
inappropriate for the study of the noise radiated by subsonic jets and for supersonic
jets around θ = 90◦. Therefore it is definitely not convenient for a computational
approach, even at high Mach number. In contrast, formulation (3) is the simplest to
implement. It also allows a simple geometrical interpretation in (κ, ω)-space. Thus
formulation (3) is retained for all acoustic computations for the two subsonic and
supersonic jets.
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Figure 22. Influence of the amplitude of the excitation β, where β is defined in (3.1), on the
computed radiated noise at M = 0.50. ——, θ = 30◦ and β = 0.005; – – – –, θ = 30◦ and β = 0.0025;
— ·—, θ = 90◦ and β = 0.005; · · · · · ·, θ = 90◦ and β = 0.0025.

Note that other formulations of Lighthill’s analogy exist, such as those of Ribner
(1964) or Howe (1975). The first tends to enlarge the spatial distribution of the
source term, while the second is in practice limited to low-speed flows, and these
formulations are therefore less suitable for numerical calculations.

5. Acoustic results
The computational approach described previously is now used to obtain acoustic

field estimates. These results will be interpreted in the light of experimental data.

5.1. The aerodynamic excitation

It is first important to check that the aerodynamic excitation does not influence
acoustic computations. As explained in §3, the transverse velocity profile in the nozzle
is perturbed with an excitation described by (3.1), the intensity of which is determined
by the parameter β. It is first verified that the computed spectra do not show any rise
in the excitation band (from St = 0.2 to 0.5). Moreover, a simple and decisive test is
to modify the amplitude of the excitation to see how the radiated noise is affected.
Thus, figure 22 displays the computed acoustic spectra obtained for the subsonic jet
at θ = 30◦ and θ = 90◦ for two different values of β: β = 0.005 which is the value
adopted everywhere else and β = 0.0025. If there was a direct connection between
the excitation introduced in the aerodynamic calculations and the estimated acoustic
intensity, there would be a homogeneous shift of 6 dB between the two curves at each
angle. Obviously, there is no such variation. The small differences as β is changed are
not of constant sign all over the spectrum and may well be explained as statistical
fluctuations which would disappear by averaging the results over a larger number of
samples. Of course, the same observation could have been made on the aerodynamic
spectra.

5.2. The subsonic jet

Very few experiments deal with the noise produced by high-aspect-ratio rectangular
jets. However, in the subsonic range, Kouts & Yu (1974) made some acoustic
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Figure 23. Acoustic radiation from the subsonic jet (M = 0.50). (a) θ = 30◦; (b) θ = 90◦. ——,
Present computation; −3−, experimental data for a rectangular jet at M = 0.54 with A = 10
(Kouts & Yu 1974).

measurements on a rectangular jet with an aspect ratio of 10 for Mach numbers
ranging from 0.3 to 0.7 and provide a rather complete set of data for M = 0.54 which
is the case closest to our computed jet at M = 0.50. Other measurements relevant
to the subsonic jet have been reported by Olsen, Gutierrez & Dorsch (1973). The jet
is rectangular, the aspect ratio A = 69 and M = 0.50. Unfortunately this reference
does not contain spectra at different angles of emission.

Therefore, the computed spectra obtained for the subsonic jet at θ = 30◦ and
θ = 90◦ are compared in figure 23 (a,b) with the data of Kouts & Yu (1974). Of
course an exact match was not to be expected because of the various levels of
approximation used in the calculation. More specifically two separate problems may
be identified in these plots. First the level of the numerical prediction is too high
by up to 10 dB at certain frequencies. This can be explained essentially by the fact,
underlined in §3, that the level of the computed aerodynamic fluctuations and hence
of the acoustic source term, is overestimated. Consider for example that since the
acoustic intensity depends quadratically on the acoustic fluctuation level, a shift of
10 dB may be accounted for by a factor 3 on the coherent structures level. The
second point is more important and relates to the spectral contents of the computed
radiation. Thus, the high-frequency part of the experimental spectra, say for St > 0.2,
is essentially missing in the numerical estimates. Correspondingly, the decay of the
computed spectra at high frequency is much steeper.

To explain this, it is necessary to discuss the origin of the high-frequency acoustic
radiation from subsonic jets. The very small coherent structures arising near the jet
nozzle constitute one possible source of this noise. This follows the simple idea that
the frequency of the radiated noise is directly linked to the characteristic frequency of
the eddies emitting it. However, this assumption is contradicted numerically: it has
been verified that an aerodynamic computation using a grid especially refined near
the nozzle provides a precise representation of the small structures in the beginning
of the shear layers but that the radiated noise spectra are hardly modified. In fact,
a simple time representation of the noise generation mechanism is not sufficient and
the answer lies in the distribution of the acoustic source term in the two-dimensional
wavenumber–frequency space. This distribution, evaluated numerically, is presented
in figure 24 (a,b) for the subsonic jet. The similarity with sketches imagined e.g. by
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Figure 24. Contours of the space–time power spectral density of Lighthill’ source term for M = 0.50.
(a) θ = 0◦; (b) θ = 90◦. Five contours are drawn from 10 dB under the maximum attained in the
plane for θ = 0◦, in increments of −8 dB. The arrow represents the sonic line.
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Figure 25. Interpretation in the (κ, ω)-plane of the origin of the high-frequency radiation in a
subsonic jet. Conventions of figure 18 are adopted.

Ffowcs Williams (1963) or with the one shown in figure 18 is striking. The dominant
(κ, ω)-components of the source term are clearly localized along a straight line, which
as explained in §4 is interpreted as the convection line. As expected, the slope of the
convection line is zero for θ = 90◦ (see figure 24b).

Now what happens when high-frequency coherent structures are captured is shown
in figure 25: these eddies are subjected to the mean flow convective effect and the
distribution of the source term is extended along the convection line, where it brings
no contribution at all to the radiated noise. Only the largest coherent structures
(with lowest characteristic wavenumber) may be direct contributors. Pursuing this
analysis, it appears that the high-frequency acoustic radiation is due to the source term
components that are away from the convection line, i.e. rather to internal structures
that modify the main convection effect and broaden the localization of the source
term around the convection line. This gives another point of view on the well-known
fact that the acoustic efficiency of subsonic jets is very poor: noise may be produced
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Figure 26. Acoustic directivity for the subsonic jet (M = 0.50). ——, Present computation; −3−,
experimental data for a rectangular jet at M = 0.54 with A = 10 (Kouts & Yu 1974); −+−,
experimental data for a rectangular jet at M = 0.55 with A = 69 (Olsen et al. 1973).

only by a low-intensity part of the aerodynamic fluctuations, acting as a perturbation
of the global jet development.

As a consequence, it is not possible to solve this problem using SDM. In fact,
the present model only captures coherent structures radiation. The inner fine-grained
turbulence within the coherent eddies which should be represented to obtain broad-
band radiated noise spectra is not part of the coherent motion. Practically, the limit
between what is computed and what is modelled in SDM is not adjustable and the
computation is roughly independent of the grid employed, except of course very
near the nozzle where the size of the first structures to appear is determined by the
minimum mesh spacing. In this sense, and it is one of our important conclusions,
subsonic jet noise, at least up to M = 0.50, may not be predicted in a satisfactory
manner with only the contribution of large-scale coherent motion.

Despite the fact that only the low-frequency part of the radiated noise may be
represented, the acoustic directivity is seen in figure 26 to be correctly estimated.
The reader should not be confused by the fact that the level of the computed
directivity compares so well with the experimental data: this agreement is mainly
due to the cancellation of two errors, namely the overestimation of the acoustic level
at low frequency and the lack of high-frequency radiation. However, the decrease
of the acoustic emission as the polar angle θ increases is well captured, consistently
with the (κ, ω)-space analysis presented in §4. At small angles of observation, the
experimental directivities decrease because acoustic waves are refracted by the mean
flow. As explained previously, this phenomenon may not be represented by Lighthill’s
analogy, so that it is perfectly normal that its effects do not appear in the numerical
calculation. Finally, the small rise of the computed directivity for θ > 110◦ is a
spurious phenomenon due to signal processing problems in the region where the
actual acoustic integral of the source term is so low that it is easily perturbed by
numerical errors.

5.3. The supersonic jet

If, as shown in the following, the numerical estimation of supersonic jet noise is easier,
the validation by experiments on rectangular jets is even more difficult because it is
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Figure 27. Acoustic radiation from the supersonic jet (M = 1.33). ——, Present computation at
θ = 22.5◦; – – – –, θ = 90◦; −3−, experimental data at θ = 22.5◦ for a rectangular jet at UJ/c0 = 1.33,
M = 1.66 and A = 1.5 (Seiner et al. 1986).

technically almost impossible to obtain a supersonic fully expanded rectangular jet.
We here use measurements of Seiner, Ponton & Manning (1986) (also documented
in Ponton, Manning & Seiner 1986) where the case of interest is a rectangular jet
at Mach number 1.66 with a nozzle exit aspect ratio of 1.5. This is an unheated
jet and the ratio UJ/c0, which is the essential parameter (rather than M) as regards
supersonic jet noise, may be estimated to be 1.33, while our computed jet corresponds
to M = 1.33 and TJ = T0. As a first approximation, the temperature effect between
the two numerical and experimental jets may be reduced to a simple shift in the
acoustic level, according to the well-known dimensional law

I ∝ ρ2
JU

8
J .

Therefore, the computed acoustic intensities should be expected to be about 4 dB
below the experimental ones.

The computed spectra are shown in figure 27 for θ = 22.5◦ and θ = 90◦. For
θ = 22.5◦, the spectrum measured by Seiner et al. (1986) is also indicated. As 4
dB should separate the two spectra at θ = 22.5◦, the collapse of the curves must
be considered as a numerical overestimation by 4 dB. This is a minor discrepancy,
in view e.g. of the simplicity of the three-dimensional normalization of the two-
dimensional acoustic computations. Besides, it can be explained as above by the
overestimation of the coherent structure level. This overestimation has been shown to
be less pronounced than for the subsonic jet, explaining the better prediction of the
acoustic level. More important and in complete contrast with the preceding case, the
shape of the spectrum is in excellent agreement with the experiment. The oscillations
that perturb the computed spectrum would of course be completely smoothed out by
a real one-third octave-band averaging.

The explanation for this agreement may again be drawn from the source term
(κ, ω)-space distribution, which is plotted in figure 28. This time the convection line
is much closer to the sonic line and most of the aerodynamic fluctuations contribute
to the sound field. In other words the whole spectrum of the radiated noise may
be accounted for by the coherent structures contribution. In fact, this is true for
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Figure 28. Contours of the space–time power spectral density of Lighthill’s source term for
M = 1.33 at θ = 0◦. Five contours are drawn from 15 dB under the maximum attained in the plane,
in increments of −10 dB. The arrow represents the sonic line.
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Figure 29. Acoustic directivity for the supersonic jet (M = 1.33). ——, Present computation; −3−,
experimental data for a rectangular jet at UJ/c0 = 1.33, M = 1.66 and A = 1.5 (Seiner et al. 1986);
−+−, experimental data for a circular jet at UJ/c0 = 1.37 and M = 1.33 (Tanna et al. 1976).

low angles of emission. When θ increases, the convection line moves away from the
sonic line and a situation similar to the subsonic one is recovered. Thus, there are
no reliable experimental data for the spectrum radiated at 90◦ but the experimental
spectral density is certainly broader than what is observed in figure 27.

This may be seen also in the directivity, displayed in figure 29. Measurements
by Tanna, Dean & Burrin (1976) for a circular jet at Mach number 1.33 with
UJ/c0 = 1.37 are also indicated and the relatively higher acoustic level on the rear
arc (θ > 90◦) for the experimental rectangular jet is due to shock-associated noise.
Thus, the rectangular jet of Seiner et al. (1986) is not really perfectly expanded and
the circular jet directivity is more representative of what should be expected from
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the computations. Apart from the refraction drop-off at small angles, the numerical
directivity is satisfactory in the forward arc and tends to decrease too fast at higher
angles of observation. This stems from the fact that only the low-frequency part
of the spectra is correctly estimated. Note also that the vertical range is different
between figures 26 and 29 and that the steepening of the directivity as the Mach
number increases, which was also predicted from the (κ, ω)-space interpretation of
Lighthill’s analogy, is well captured.

6. Conclusions
This study focuses on the assumption that most of the noise radiated by high-

Reynolds-number free shear flows is determined by the large-scale coherent motion.
It is shown here that the use of classical theories combined with modern numerical
methods yields an efficient computational approach to address this problem.

One original feature of this work is the use of semi-deterministic modelling (SDM)
which specifically accounts for the aerodynamic coherent motion. SDM may be
derived in principle from most classical turbulence closures and is obtained here from
the classical k−ε model. At present, the main difficulty of this implementation of
SDM is the lack of a well-documented calibration. Thus, the ratio of the coherent
fluctuations level to the total turbulence level, hence the amplitude of the coherent
structures, depends on the choice of the viscosity constant Cµ. The determination
of Cµ poses problems which are somewhat analogous to those found in devising
Smagorinsky-like subgrid-scale models for LES. Nevertheless the computation of a
realistic unsteady jet flow remains a challenging problem to which SDM brings a
satisfactory solution.

The far sound field radiated by the computed coherent structures is suitably eval-
uated from Lighthill’s analogy. In contrast with other computational aeroacoustic
(CAA) approaches, such as Kirchhoff’s formulation or direct numerical simulation,
it does not require a complete representation of the compressible near field. For this
reason also, near-field propagation effects, namely refraction, may not be captured.
Despite this restriction the present approach is well suited to applications of practical
interest. It has been verified that at least for subsonic flows, the different integral for-
mulations of Lighthill’s theory are not equally adapted to numerical estimation. The
formulation retained here is the one expressed in a space–time Fourier transformed
plane. Besides being adequate whatever the Mach number, it leads to a geometrical
interpretation and to further understanding of the radiation process. This interpre-
tation greatly helps the acoustic results analysis. Thus, the high-frequency part of
the acoustic radiation tends to be missing when the contribution of the coherent
structures does not dominate the sound field. From this work, we may deduce that
this occurs for subsonic jets, at least up to Mach number 0.50 and for supersonic
jets when the angle of observation is far from the angle of maximum emission. More
precisely, in this case, the high-frequency radiation is due to smaller eddies inside
the largest ones, that perturb their main convective character. Yet directivity effects
are always correctly captured, even though the absolute acoustic level is at present
too high, due to an overestimation of the coherent structure amplitude by SDM.
The present analysis indicates that for subsonic jets the acoustic radiation is not dom-
inated by the direct contribution of large-scale coherent structures. Roughly speaking,
at Mach number 0.50, the acoustic frequencies represented by the computation lie
between St = 0.02 and St = 0.2 while the experimental spectra occupy a band ten
times larger from St = 0.02 to St = 2. Yet half of the energy is located below St = 0.2
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and from this point of view we are close to having captured the ‘dominant part’
of the radiated noise. This result may be considered in relation to observations by
Witkowska, Brasseur & Juvé (1995) who show that noise radiated by low Reynolds
number isotropic homogeneous turbulence is dominated by the contribution of ed-
dies about three times smaller than energy-containing scales. At this stage, it would
be interesting to know if the use of conventional large-eddy simulation (LES) may
provide better results. With LES, it is theoretically possible to adjust the maximum
spatial wavenumber accessible in the computation. With a sufficiently fine grid, it
must be possible to capture a part of the inner structure of the large eddies, which
would allow a greater portion of high-frequency acoustic radiation to be obtained.
Yet, first tests performed with Smagorinsky’s model support the idea that to broaden
the acoustic spectra it is necessary to refine the aerodynamic computational grid in
the same proportion, which is very expensive. Besides, it should be kept in mind
that two-dimensional computations become less adequate as finer spatial scales are
calculated. Of course, the problem is easier to handle as the Mach number is increased
and high-subsonic or transonic jets may be treated more reasonably.

In contrast with most CAA approaches, this combination of SDM with Lighthill’s
analogy yields results that are close enough to available experimental data to make
the comparison informative. For the plane jet case treated here though, it is nec-
essary to model the transverse correlation scale to get three-dimensional acoustic
results from two-dimensional computations. The axisymmetric configuration is ex-
perimentally much better documented and would permit direct comparisons. Yet, a
two-dimensional axisymmetric computation of a round jet is questionable since in this
case even the large-scale coherent motion is known to be generally three-dimensional.
Thus full three-dimensional computations could be considered in the near future. For
the treatment of the high-frequency part of the acoustic radiation in subsonic jets,
the approach described here may also be coupled to a more classical statistical model
which would account for the radiation of smaller, presumably more homogeneous,
turbulent spatial scales.

Finally a referee has brought to our attention the problem of the sound originating
inside the jet pipe or immediatly at the nozzle lip, rather than produced by the
turbulent fluctuations of the external flow. The nature of the mechanism by which
this contribution affects the global radiated noise is still a problem and the question is
open of whether the present approach is suitable. However the precise configuration
of the nozzle is of great importance for this problem and the flow computation should
provide a reliable, probably fine-scale, representation of the exit region, including at
least a portion of the nozzle lip. These demanding constraints have still to be satisfied
but it may then be interesting to tackle this issue with a computational approach.

We wish to thank Professor D. Vandromme for providing the code used for
aerodynamic computations. This work is part of the PhD dissertation of the first
author, who is greatly indebted to SNECMA for its support, monitored by H. Joubert.
Computer resources and support from EDF is also gratefully acknowledged.

REFERENCES

Barre, S., Quine, C. & Dussauge, J. P. 1994 Compressibility effects on the structure of supersonic
mixing layers: experimental results. J. Fluid Mech. 259, 47–78.

Béchara, W., Lafon, P., Bailly, C. & Candel, S. 1995 Application of a k−ε model to the prediction
of noise for simple and coaxial free jets. J. Acoust. Soc. Am. 97, 3518–3531.



302 F. Bastin, P. Lafon and S. Candel

Bishop, K. A., Ffowcs Williams, J. E. & Smith, W. 1971 On the noise sources of the unsuppressed
high-speed jet. J. Fluid Mech. 50, 21–31.

Blake, W. K. 1986 Mechanics of Flow-Induced Sound and Vibration. Vol. I General Concepts and
Elementary Sources. Academic.

Bogdanoff, D. W. 1983 Compressibility effects in turbulent shear layers. AIAA J. 21, 926–927.

Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers.
J. Fluid Mech. 64, 775–816.

Buell, J. C. & Huerre, P. 1988 Inflow/outflow boundary conditions and global dynamics of spatial
mixing layers. Center for Turbulence Research, Proc. of the Summer Program, pp. 19–27.

Colonius, T., Lele, S. K. & Moin, P. 1993 Boundary conditions for direct computation of
aerodynamic sound generation. AIAA J. 31, 1574–1582.

Crighton, D. G. 1975 Basic principles of aerodynamic noise generation. Prog. Aerospace Sci. 16,
31–96.

Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48,
547–591.

Dimotakis, P. E. 1986 Two-dimensional shear-layer entrainment. AIAA J. 24, 1791–1796.

Ffowcs Williams, J. E. 1963 The noise from turbulence convected at high speed. Phil. Trans. R.
Soc. Lond. A 225, 469–503.

Ffowcs Williams, J. E. & Kempton, A. J. 1978 The noise from the large-scale structure of a jet. J.
Fluid Mech. 84, 673–694.

Ffowcs Williams, J. E. & Maidanik, D. L. 1965 The Mach wave field radiated by supersonic
turbulent shear flows. J. Fluid Mech. 21, 641–657.

Giles, M. B. 1990 Nonreflecting boundary conditions for Euler equation calculations. AIAA J. 28,
2050–2058.

Goebel, S. G. & Dutton, J. C. 1991 Experimental study of compressible turbulent mixing layers.
AIAA J. 29, 538–546.

Goldstein, M. E. & Rosenbaum, B. 1973 Effects of anisotropic turbulence on aerodynamic noise.
J. Acoust. Soc. Am. 54, 630–645.

Ha Minh, H. 1994 Order and disorder in turbulent flows: their impact on turbulence modelling.
Osborne Reynolds centenary symposium, UMIST, Manchester, 24 May.

Ha Minh, H., Viegas, J. R., Rubesin, M. W., Vandromme, D. D. & Spalart, P. 1989 Physical
analysis and second-order modelling of an unsteady turbulent flow: the oscillating boundary
layer on a flat plate. Proc. Seventh Intl Symp. on Turbulent Shear Flows, Stanford University,
Stanford, CA.

Howe, M. S. 1975 Contributions to the theory of aerodynamic sound, with application to excess jet
noise and the theory of the flute. J. Fluid Mech. 71, 625–673.

Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows.
Ann. Rev. Fluid Mech. 22, 473–537.

Hussain, A. K. M. F. 1983 Coherent structures-reality and myth. Phys. Fluids 26, 2816–2850.

Hussain, A. K. M. F. & Reynolds, W. C. 1970 The mechanics of an organized wave in turbulent
shear flow. J. Fluid Mech. 41, 241–258.

Johansson, S. H., Davidson, L. & Olsson, E. 1993 Numerical simulation of vortex shedding past
triangular cylinder at high Reynolds number using a k−ε turbulence model. Intl J. Numer.
Methods Fluids 16, 859–878.

Jones, W. P. & Launder, B. E. 1972 The prediction of laminarization with a two-equation model
of turbulence. Intl J. Heat Mass Transfer 15, 301–314.

Kouts, C. & Yu, J. C. 1974 Far noise field of a two-dimensional subsonic jet. AIAA Paper 74-44.

Lau, J. C., Morris, P. J. & Fisher, M. J. 1979 Measurements in subsonic and supersonic free jets
using a laser velocimeter. J. Fluid Mech. 93, 1–27.

Laufer, J. 1974 On the mechanism of noise generation by turbulence. Omaggio a Carlo Ferrari, pp.
451–464. Libreria Editrice Universitaria Levrotto & Bella, Torino.

Laufer, J. & Yen, T.-C. 1983 Noise generation by a low-Mach-number jet. J. Fluid Mech. 134,
1–31.

Lepicovsky, J., Ahuja, K. K., Brown, W. H. & Burrin, R. H. 1985 Coherent large-scale structures
in high Reynolds number supersonic jets. NASA Contractor Report 3952.

Liepmann, H. W. 1952 Aspects of the turbulence problem. Part II. Z. Angew. Math. Mech. 3, 407–426.



Computation of jet mixing noise due to coherent structures 303

Lighthill, M. J. 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond.
A 211, 564–587.

Liu, J. T. C. 1974 Developing large-scale wavelike eddies and the near jet noise field. J. Fluid Mech.
62, 437–464.

Liu, J. T. C. 1988 Contributions to the understanding of large-scale coherent structures in developing
free turbulent shear flows. Adv. Appl. Mech. 26, 183–305.

Longmire, E. K. & Eaton, J. K. 1994 Active open-loop control of particle dispersion in round jets.
AIAA J. 32, 555–563.

McCormack, R. W. 1981 A numerical method for solving the equations of compressible viscous
flow. AIAA Paper 81-0110.

McInnes, J. M., Claus, R. W. & Huang, P. G. 1989 Time-dependent calculation of a forced
mixing layer using a k−ε turbulence model. Proc. Seventh Intl Symp. on Turbulent Shear Flows,
Stanford University, Stanford, CA.

McLaughlin, D. K., Morrison, G. L. & Troutt, T. R. 1975 Experiments on the instability waves
in a supersonic jet and their acoustic radiation. J. Fluid Mech. 69, 73–95.

McLaughlin, D. K., Morrison, G. L. & Troutt, T. R. 1977 Reynolds number dependence in
supersonic jet noise. AIAA J. 15, 526–532.

Mitchell, B. E., Lele, S. K. & Moin, P. 1995 Direct computation of the sound from a compressible
co-rotating vortex pair. J. Fluid Mech. 285, 181–202.

Moore, C. J. 1977 The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 80,
321–367.

Morris, P. J. 1977 Flow characteristics of the large scale wave-like structure of a supersonic round
jet. J. Sound Vib. 53, 223–244.

Mumford, J. C. 1982 The structure of the large eddies in fully developed turbulent shear flows.
Part 1. The plane jet J. Fluid Mech. 118, 241–268.

Olsen, W. A., Gutierrez, O. A. & Dorsch, R. G. 1973 The effect of nozzle inlet shape, lip
thickness, and exit shape and size on subsonic jet noise. AIAA Paper 73-187.

Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer: an experimental
study. J. Fluid Mech. 197, 453–477.

Phillips, 0. M. 1960 On the generation of sound by supersonic turbulent shear layers. J. Fluid
Mech. 9, 1–28.

Poinsot, T. J. & Lele, S. K. 1992 Boundary conditions for direct simulations of compressible
viscous flows. J. Comput. Phys. 101, 104–129.

Ponton, M. K., Manning, J. C. & Seiner, J. M. 1986 Far-field acoustics of supersonic rectangular
nozzles with various throat aspect ratios. NASA Tech. Mem. 89002.

Ribner, H. S. 1964 The generation of sound by turbulent jets. In Advances in Applied Mechanics
(ed. H. L. Dryden & T. von Karman), pp. 103–182. Academic.

Ribner, H. S. 1969 Quadrupole correlations governing the pattern of jet noise. J. Fluid Mech. 38,
1–24.

Samimy, M. & Elliott, G. S. 1990 Effects of compressibility on the characteristics of free shear
layers. AIAA J. 28, 439–445.

Sarkar, S. & Hussaini, M. Y. 1993 Computation of the acoustic radiation from bounded homoge-
neous flows. In Computational Aeroacoustics (ed. J. C. Hardin & M. Y. Hussaini), pp. 335–355.
Springer.

Seiner, J. M., McLaughlin, D. K. & Liu, C. H. 1982 Supersonic jet noise generated by large-scale
instabilities. NASA Tech. Paper 2072.

Seiner, J. M., Ponton, M. K. &Manning, J. C. 1986 Acoustic properties associated with rectangular
geometry supersonic nozzles. AIAA Paper 86-1867.

Shih, C., Krothapalli, A. & Gogieni, S. 1992 Experimental observations of instability modes in a
rectangular jet. AIAA J. 30, 2388–2394.

Tam, C. K. W. 1991 Jet noise generated by large-scale coherent motion. In NASA Reference
Publication 1258, Vol. 1 (ed. H. H. Hubbard), pp. 311–390.

Tam, C. K. W. & Burton, D. E. 1984 Sound generated by instability waves of supersonic flows.
Part 2. Axisymmetric jets. J. Fluid Mech. 138, 273–295.

Tam, C. K. W. & Morris, P. J. 1980 The radiation of sound by the instability waves of a compressible
plane turbulent shear layer. J. Fluid Mech. 98, 349–381.

Tanna, H. K., Dean, P. D. & Burrin, R. H. 1976 The generation and radiation of supersonic jet



304 F. Bastin, P. Lafon and S. Candel

noise. Vol. III. Turbulent mixing noise data. Air Force Aero-Propulsion Laboratory, Tech. Rep.
76-65.

Thomas, F. O. & Goldschmidt, V. W. 1986 Structural characteristics of a developing turbulent
planar jet. J. Fluid Mech. 163, 227–256.
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